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Abstract

FPGA-based Configurable Computing Machines
(CCMs) offer powerful and flexible general-purpose com-
puting platforms. However, development for FPGA-based
designs using modern CAD tools is geared mainly toward
an ASIC-like process. This is inadequate for the needs
of CCM application development. This paper discusses
an application framework for developing CCM-based
applications beyond just the hardware configuration. This
framework leverages the advantages of CCMs (availability,
programmability, visibility, and controllability) to help
create CCM-based applications throughout the entire
development process (i.e. design, debug, and deploy). The
framework itself is deployed with the final application,
thus permitting dynamic circuit configurations that include
data folding optimizations based on user input. The
resulting system aids in creating applications that are
potentially more intuitive, easier to develop, and better
performing. An example application demonstrates the use
of the application framework and the potential benefits.

1 Application Acceleration Using FPGA-
based CCMs

Configurable computing machines (CCMs) are FPGA-
based processing and computing platforms. Figure 1 shows
the components of a typical CCM architecture. CCMs pro-
vide a versatile and powerful computing platform that may
be integrated with a host system. The FPGAs in a CCM can
be configured by the host system to perform virtually any
type of computation or process. This makes CCMs attrac-
tive computing platforms with flexibility comparable to that
of microprocessor-based systems and performance compa-
rable to that of ASIC designs.
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Figure 1. Configurable Computing Machine
(CCM) Block Diagram.

Because CCM computation and processing occurs in
hardware, applications targeted to CCMs may be able to run
several times faster than if they were executed in software
running on a microprocessor. In some cases, CCM-based
applications may be more than an order of magnitude faster
than alternative implementations[13]. CCMs are also ca-
pable of improving the performance-to-price ratio in many
applications[12].

Although CCMs do offer a number of potential advan-
tages, the cost of producing a full application for use on a
CCM platform can still be high. One reason is the multiple
types of design components found in a CCM-based appli-
cation. (See Figure 2.) The interface drivers are often pro-
vided by the developers of the CCM hardware. However,
application developers must still deal with the large tasks of
developing the hardware configuration and application soft-
ware.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2003 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2003 to 00-00-2003  

4. TITLE AND SUBTITLE 
Reconfigurable Computing Application Frameworks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Brigham Young University,Department of Electrical and Computer 
Engineering,Provo,UT,84602 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



CCM−based Application

Configuration
Hardware

Software
Application

Interface
Drivers

FPGA−Host

Figure 2. The hardware and software design
components of a CCM application.

2 Limitations of Current CAD Tools for
CCM Application Development

In order to quickly generate a new market for their prod-
ucts, FPGA manufacturers have relied heavily on the exist-
ing electronic design automation (EDA) and CAD tool in-
frastructure. By offering libraries for use with major CAD
tools, or information sufficient for others to create such li-
braries, FPGA manufacturers have allowed designers to use
their favorite EDA/CAD tools to create designs that tar-
get FPGA devices. While this strategy has allowed FPGA
producers to successfully build up a large market for their
products, it has also created a development system that is
ASIC-oriented[8]. This ASIC-oriented nature of CAD tools
has been adequate for creating FPGA designs that serve as
ASIC prototypes or replacements. However, focusing only
on hardware design and simulation limits development for
CCM applications by ignoring the benefits of CCM features
and by not supporting the software development, which is
crucial to the final application deployment.

The ASIC-orientation of EDA/CAD tools commonly
used for FPGA configuration design results in a split de-
velopment path for the hardware and software components
of the application as shown in Figure 3. The disjoint, of-
ten sequential, development of the hardware design and the
software design extends the time necessary to develop the
whole CCM application. A combined development path, as
shown in Figure 4, streamlines development of the hardware
and software and reduces the complexity of the deployment
stage.

At this point, it should be noted that this paper is not
about the automated partitioning problem for hardware/-
software co-design. That is, this paper is not about a tool for
system specification, co-design, and co-simulation. Rather,
this paper discusses methods of joining the hardware and
software development environments in such a way that ex-
tends the benefits provided by an EDA tool beyond the de-
sign and debug stages of development. Although this new
integrated approach to developing CCM applications can
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Figure 3. Traditional stages of CCM applica-
tion production.
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Figure 4. Combined stages of CCM applica-
tion production.

facilitate the partitioning problem, it also has benefits that
simplify application development in general, and that may
result in applications that perform significantly better.

3 Leveraging Features of CCMs in Applica-
tion Development

Development of CCM applications may be improved by
leveraging the features of FPGAs and FPGA-based CCM
platforms. As noted by Hutchings and Nelson[7], three ma-
jor features of CCMs are:

• Availability of the hardware at design time

• Programmability and re-programmability of the hard-
ware

• Visibility into the hardware

To this list, Graham[4] adds the following:

• Controllability of the hardware state

• System execution controllability

Two major benefits come as a result of these features of
CCM systems: a reduction in the need for simulation for
hardware design verification, and tighter integration of the
software and the hardware components of CCM applica-
tions, particularly in the deploy stage of development and
beyond.

Traditional EDA/CAD tools have assumed that the de-
sign may only be put into hardware form after extensively
simulating it in order to fully verify its functionality. Re-
lying exclusively on simulation to verify hardware designs
is resource- and time-intensive, making design verification
a bottleneck in the development process. While simulation



does have its place in designing for FPGAs, making use
of the target CCM platform for in-hardware execution can
reduce reliance on simulation for circuit verification. Us-
ing target FPGA hardware as a replacement for full simu-
lation is possible due to the extraordinary internal visibility
made available by the hardware.1 Unfortunately, traditional
EDA/CAD systems typically do not offer support for in-
hardware execution and debugging of designs; rather, they
focus only on the hardware design.

Design and Debug

In-hardware execution is typically several orders of mag-
nitude faster than simulation[4]. Integrating the informa-
tion from in-hardware execution of incremental and final
builds of the hardware design within the development en-
vironment allows the designer to verify the design in less
time[7]. Shorter design and debug cycles may then per-
mit further design exploration, and thus improve the design
overall.

CCM features permit the hardware to be viewed as an
extension of the application software. This gives a more
useful view of the CCM application as a whole comput-
ing system, rather than two separate pieces. This enables
further design exploration that helps to determine the op-
timal partition between the hardware and software compo-
nents of the application. Also, integrated application devel-
opment helps detect and eliminate design flaws that might
not be evident in separated design flows. The integrated
development approach also allows developers to focus at-
tention on the interface with which the final user interacts.
The result is an application that not only solves a particular
problem, but that is also intuitive to the target audience. In
summary, modern CAD tools lack integrated hardware and
software development environments to support the deploy-
ment of complete CCM applications.

Deploy

Perhaps one of the greatest benefits of an integrated de-
sign process is the potential for improved application per-
formance. When an ASIC design is fabricated, it usually
must work with a wide range of data. Such generic designs
come with the tradeoffs of larger size and slower speeds.
The re-programmability of CCMs, however, allows for per-
formance enhancements to be made by embedding specific
data from the problem being solved by the application into
the hardware design. For example, complex combinational
logic may be replaced by faster lookup tables; large, slow,

1For example, Xilinx FPGAs offer a “readback” capability, which gives
the current state of all register and memory elements in the FPGA device.

general-purpose multipliers may be replaced by more ef-
ficient constant-coefficient multipliers; etc. Such optimiza-
tions, known as data folding[3] or constant propagation[14],
can be used in applications such as FIR filters (by em-
bedding the filter coefficients in the multipliers) or pattern
matching circuits (by creating constant-value comparators).

With high-performance CCM applications, when the
data changes, so does the problem to be solved. That is,
when the end user has a new set of information to be pro-
cessed by the application, CCM applications have the ca-
pability to adapt to that new set of data for optimal perfor-
mance. Such adaptation may come as a result of regenerat-
ing netlists and performing placement and routing again. Or
the application may adapt by modifying FPGA configura-
tion bit streams or some intermediate form of the hardware
configuration[4]. Thus, performance improvements gained
from data folding may require significant portions of the
hardware design tool to be included in the final application.
This defines a new role for EDA/CAD tools; that is, certain
CCM applications may require the tools themselves to be
deployed along with the applications. The benefits of hard-
ware reconfiguration enabled by the tools may then remain
with the final application in the deploy stage and beyond.

4 Reconfigurable Computing Application
Frameworks

The traditional monolithic EDA/CAD tool system is in-
sufficient to support the unique needs of CCM application
design, debug, and deployment. This section explains how
application frameworks offer a better alternative.Recon-
figurable computing application frameworks(RCAFs) help
designers use CCM features to easily develop a custom de-
sign and debug environment that is specific to a given appli-
cation. Using an RCAF, the preparations for deployment of
a CCM-based application will occur simultaneously as the
whole application, including both the hardware and soft-
ware components, is built up in an integrated fashion.

As general-purpose computing platforms, CCMs may be
used as the processing cores for a wide variety of applica-
tions. Loading a new hardware configuration into the FP-
GAs of a CCM changes its functionality. Configuring the
FPGA hardware of a CCM is much like loading in a new
software program on a microprocessor-based machine. And
much like software loading, CCM configuration and recon-
figuration can be dynamic and interactive. RCAFs support
the dynamic, software-like features and operation of CCMs.
As shown in Figure 5, an RCAF implementation is a bridge
between the CCM hardware and the CCM application soft-
ware running on the host system. The RCAF is integrated
and deployed with the CCM application. The scalable and
modular nature of the RCAF makes this possible; this is
typically not feasible with large, monolithic CAD tools.
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Figure 5. The RCAF interfaces between the
CCM hardware and application software

4.1 RCAF Interface Between CCM Hardware
and CCM Software

An RCAF offers simple and accessible interfaces to all
of the important features of targeted CCM platforms. The
RCAF takes care of the low-level details of configuring and
operating the CCM hardware (i.e. FPGA configuration, re-
set, clock starting, stopping, and stepping, querying hard-
ware state, etc.). Ideally, an RCAF will work with virtually
any CCM hardware platform. The same interface is avail-
able to the application developer, no matter what the target
platform may be.

In this way, the RCAF functions much like conventional
board-support software packages such as are provided with
commercially available CCM platforms (e.g. SLAAC API,
Anapolis API, etc.). However, the RCAF actually works
on top of such hardware support packages to provide much
more in its application programming interfaces (APIs). The
RCAF also includes a system that aids in the interpretation
of the hardware state as it relates to the original hardware
design. The RCAF maintains a reference mapping between
the circuit design components and their corresponding cir-
cuit elements in hardware. That is, the RCAF takes care of
the overhead necessary to give the application developer a
transparent view of the circuit structure and state while the
circuit is executing in hardware.

Because the hardware view of the circuit provided by
the RCAF is the same as the design view, circuit interaction
components (e.g. schematic viewers, circuit execution con-
trols, custom circuit visualization components, etc.) may
be consistent across the design, debug, and even deploy-
ment stages of application development. Beyond even that,
the RCAF contains APIs that aid in establishing a simple
architecture that creates a communications network that al-
lows interactive components to send and receive messages
to and from other interactive components as well as the
hardware execution and state controllers. This architecture
helps maintain a modular and scalable application system
for easy maintenance and updating.

4.2 RCAF Support for (Dynamic) Circuit Design

The RCAF is not just an interface layer in a CCM-based
application. It also contains the resources necessary for cre-
ating the hardware configuration for the CCM application.
That is, the RCAF is also a full-featured FPGA circuit de-
sign tool. The circuit design, which is built up programmat-
ically through the RCAF, may be netlisted and then trans-
lated by technology-specific tools into a configuration im-
age for the CCM hardware.

Because the RCAF is a part of the deployed application,
the circuit design need not be static. The RCAF may dy-
namically generate a custom version of the CCM hardware
based on information provided by the application. As ex-
plained in Section 3, this enables CCM applications to op-
timize the hardware configuration by folding in data pro-
vided by the user. Whether by manipulating existing con-
figuration images or by regenerating netlists and performing
placement and routing, the RCAF can assist in providing
dynamic, interactive circuit creation capabilities in the field
to significantly improve application performance.

5 A Reconfigurable Computing Application
Framework Implementation

The general architecture of areconfigurable comput-
ing application frameworkimplemented at Brigham Young
University’s Configurable Computing Laboratory was pat-
terned after the model-view-controller architecture shown
in Figure 6. Themodel is the fundamental data being
manipulated by the system or the computation being per-
formed. Theview is the system component that determines
how data is presented to the user. Thecontroller is the por-
tion of the system that receives user input and interprets it
to perform system tasks. These tasks may perform manipu-
lations of the data or they may change the way in which the
view displays information about the data. The model-view-
controller architecture divides the functionality of a system
along boundaries that allow for simple system production,
maintenance, and scalability[11]. It also establishes a natu-
ral communications network between the three components.
The description of the RCAF that follows is divided along
the boundaries established by the model-view-controller ar-
chitecture.

5.1 The RCAF Model Component

The underlyingmodelfor the RCAF is implemented by
JHDL. JHDL is a tool for designing and simulating digi-
tal circuits, and is especially well-suited for reconfigurable
computing designs[1, 6]. JHDL performs the role of model
for the RCAF by representing the structure and state of the
hardware design. Manipulations to the model come in the
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Figure 6. The model-view-controller architec-
ture for user interfaces[11].

form of stepping the circuit clock and applying values to the
circuit inputs.

Figure 7 shows the general architecture of a JHDL design
as well as the types of APIs exposed to external systems.
These APIs are used to manipulate the model as well as to
extract information about the model’s state. Each API is
explained separately below.

Circuit State APICircuit Structure API Execution API

JHDL Circuit Design

JHDL TestBench

Execution Control
(Simuluation/In−hardware)

JHDL Hardware System

Figure 7. JHDL APIs offer access to circuit
information and control.

Circuit Structure API

The circuit structure API gives access to the components
of a circuit design (cells and wires) and their relationships
to each other. The structural view exposed by the JHDL
model is that of the original circuit design. This design may
differ from the physical circuit in hardware. For example,
the circuit model on the left in Figure 8 contains two wires
that are absent from the physical FPGA hardware configu-
ration represented on the right. However, the JHDL model
maintains information that maps structural components of

the design model to their counterparts in the physical cir-
cuit in the CCM hardware[4].

3−LUT

Figure 8. Mapping a circuit model to hardware
often loses intermediate logic and wires.

Circuit State API

The circuit state API provides a means of determining the
values on wires and in memory devices. The same API is
used whether the circuit is being simulated or is being ex-
ecuted in actual hardware. Both methods of circuit execu-
tion require the presence of the JHDL simulator as part of
the circuit model. This is because the state of the hard-
ware (obtained, for example, via hardware “readback” fea-
tures present in certain Xilinx FPGAs) usually only con-
tains state information from non-combinational logic ele-
ments. Therefore, for the circuit design shown in Figure 8,
hardware readback would only return the state of the three
flip flops. The JHDL simulator then uses those values to
interpolate the remaining three wire values, including the
two that were subsumed into the configuration of the FPGA
3-LUT. Such information can be crucial when debugging
CCM applications. This also means that the application
may provide hardware visibility without requiring the hard-
ware configuration to contain additional logic meant only to
route signals to external pins. Thus, JHDL makes added cir-
cuit information available without added circuit complexity
or latency.

Execution API

The execution API provides a means of controlling circuit
simulation and execution. Since the simulator is used in
both simulation-only and in-hardware execution of the cir-
cuit design, it is the agent that performs the data model ma-
nipulation for both modes of execution. Therefore, the ex-
ecution API is also consistent across execution modes. Be-
sides providing methods for stepping and cycling the system
clock, the execution API also provides a mechanism that al-
lows components external to the JHDL design to receive
notification of the completion of circuit execution events,



i.e. clock steps, multi-step runs, and circuit resets. Applica-
tion viewers use this portion of the execution API to know
when the circuit has settled so that they may query circuit
state information.

Integrating External Components

JHDL is based on a general-purpose programming language
(Java). This allows the JHDL APIs to be accesseddirectly
from other systems, giving JHDL an advantage over pro-
prietary languages and HDLs. Elements of a JHDL design
are represented by objects. Some example JHDL API meth-
ods provided by these objects are displayed in Table 1. The
RCAF controller and viewers are seamlessly integrated with
the JHDL model through these and other methods of the
JHDL APIs.

5.2 The RCAF Controller Component

To receive and interpret user input and execute corre-
sponding system-wide tasks, the RCAF has a centralized
controller. The principle RCAF controller is contained in
a class namedBroker . TheBroker class gets its name
from its role as an intermediary between the other major
components of the RCAF system. This class is the only
component of the RCAF that has a system-wide view of all
of the other components. Having a single class with this in-
formation instead of various components with a network of
references to each other makes the RCAF simple and easy
to maintain. This also makes the system modular and scal-
able. That is, only one class needs to be modified to change
the set of features and components included for a given ap-
plication.

The Broker class contains all of the methods to per-
form system-wide tasks. These include creating application
viewers, disposing unused viewers, managing communica-
tion between system components, and controlling the exe-
cution of the hardware.

TheBroker is aided by a command interpreter. The in-
terpreter accepts text-based commands from the application
user. The result is the invocation of corresponding meth-
ods of theBroker class. These text commands may be
stored in a history log and executed again later, making the
RCAF system scriptable. This system of text commands
also helps to make the RCAF controller modular and ex-
tensible, as will be shown in the example in Section 6. In
graphical environments, theBroker creates listeners that
translate low-level events from the viewers (e.g. button
presses, mouse clicks, and key strokes) into text commands
to give to the command interpreter. This listener system
for inter-component communication is based on the listener
model commonly used in user interface architectures, no-
tably in the Java Swing classes. Figure 9 shows how these

various controller components work together as well as how
they fit into the overall RCAF architecture.

5.3 The RCAF View Component

RCAFviewersoffer application-specific presentations of
the circuit design. They also offer a portal through which
the user may apply inputs to be passed to the RCAF con-
troller. While a default RCAF configuration for general-
purpose circuit visualization includes a standard set of view-
ers (e.g. schematic viewers, circuit hierarchy viewers,
memory viewers, etc.) each unique CCM application may
easily add to or remove from this default set of viewers as
appropriate for the application. Each custom viewer merely
needs to follow the RCAF system’s method for generating
events. In the current implementation of the RCAF this is
done by generatingaction eventsas in the Java Swing user
interface model. Each viewer should also provide a listener
interface, implementations of which may be used to trans-
late action events into commands for the command inter-
preter.

5.4 Integrating the RCAF Model, View, and Con-
troller

Figure 10 shows an example interaction between the var-
ious components of the RCAF architecture. In this example,
the user double-clicks with a mouse pointer on a portion
of the schematic viewer that displays a wire in the circuit
design. This generates an event that is picked up by the
GUI listener registered with the schematic viewer. This lis-
tener then translates that event into a textual command that
is passed to the command interpreter. The interpreter then
makes the appropriate method call in theBroker class.
TheBroker knows of two other viewers that should be af-
fected by that command and tells them to update their out-
put to include the new wire. Those viewers then query the
necessary information from the circuit model and update
their displays.

In general, theBroker holds the central position in the
RCAF system. Modifications to theBroker change the
set of available RCAF viewers. Since theBroker knows
which viewers may exist in the system, and their relation-
ships to itself and to each other, it knows how to configure
the command interpreter and the viewer listeners. Having
just this one class with information that makes up a system-
wide view makes the RCAF easier to maintain and up-
date. The single system controller simplifies removing and
adding viewers to the system and managing system com-
munication.



Table 1. Some JHDL methods for accessing circuit design information and control
JHDL Class Method Name (arguments) Return Type
HWSystem findNamed(String name) Returns an arbitrary member of circuit model.
Cell getDescendants() Returns a list of the children cells and other descendants of the

given cell
Wire get() Returns the current value of the given wire
HWSystem step (int numSteps) Steps the circuit clock for a specified number of clock edges

Execution Control

JHDL Hardware System

Viewer
Viewer

Viewer
Viewer

JHDL TestBench

Interpreter
Command

Broker

Configurable
Computing

Machine

Listener

JHDL
Circuit Design

Figure 9. The RCAF system architecture.

6 Building a CCM Application

The RCAF provides a basic architecture on which to
build a full CCM-based application. The developer needs
only only to create viewers appropriate for the given appli-
cation and extend the capabilities of theBroker class to
interact with those viewers. The following example demon-
strates how this may be done. This example application im-
plements an edit distance calculator.2 The circuit that cal-
culates the edit distance in this application is built from a
linear systolic array, a simple architecture easily optimized
for FPGA hardware[10, 5, 2]. Each processor in the array
has a character of the target string embedded in the config-
uration of the FPGA LUTs of which it is made.

The following description of this example application is
in terms of the model, view, and controller components of
the system. This shows how the various application compo-
nents correspond with the architectural components of the
RCAF. It also shows how the development of the applica-
tion may be subdivided into easy-to-manage portions. Thus
a group of designers may easily develop various parts of a
significant application concurrently.

2The edit distance between two strings is the number of character in-
sertions, deletions, and substitutions, which may be weighted differently,
that it takes to change a source string into a target string.

6.1 Edit Distance Application Model

The model for the edit distance application is a pa-
rameterizable JHDL circuit design. Figure 11 shows a
portion of the code for theEditDistance class that
builds the circuit model. The parameters that determine
the circuit structure and function are the width of the out-
put wire distanceOut and the contents of the string
targetStr . The output wire is connected to a counter
that tallies the total number of operations needed to convert
the source string to the target string. Therefore, the width
of this wire determines the maximum edit distance value
the circuit may detect. The user provides the desired target
string parameter when starting the application. This means
that the circuit will be optimized for the data at execution
time, even if it changes from one use of the application to
the next. Although this specific example only demonstrates
the RCAF system in simulation mode, the deployment-
time optimizations for in-hardware execution could be per-
formed in a variety of ways. The hardware design could be
used to produce a netlist which could then be processed by
placement, routing, and configuration bitstream generation
tools. Or a pre-existing, low-level, FPGA-specific configu-
ration could be modified by a tool such as JBits to change
the embedded constants. Previous work at Brigham Young
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Figure 10. Example communication in the RCAF model-view-controller architecture.

University has also shown that such optimizations can be
performed by directly modifying pre-bitstream or bitstream
configuration files[9]. The execution-time modifications
could take anywhere from seconds to several minutes. The
method of updating optimizations between execution runs
could be determined by the RCAF or the application code
built on top of it, making the whole process transparent to
the user.

public class EditDistance
extends Logic {

public static CellInterface[]
cell_interface = {

5in("charIn",4),
out("distanceOut",PARAM_WIDTH),
param("outputWidth",INTEGER),
param("targetString",STRING),

};
10public EditDistance(

Node parent,
Wire charIn,
Wire distanceOut,
String targetStr) {

15// constructor code ...
}

} // end class EditDistance

Figure 11. The EditDistance class creates
the circuit model for the edit distance appli-
cation.

6.2 Edit Distance Application View

The view for the edit distance application (Figure 12)
provides a simple interface that allows the user to input a

source string, control the execution of the circuit, and view
the progress of the string as it cycles through the proces-
sors of the systolic array. The inputs are in the form of text
fields. The circuit visualization shows information about
each processor in the circuit. On the top of the view of each
processor is displayed the character that is embedded in that
processor. Below that is a symbol that indicates whether the
current source character in that processor is equal or not.
Below that is the character from the source string. Finally,
on the bottom is the output value from the processor, which
is passed down the array to the accumulator connected to
the circuit output.

Figure 12. The graphical user interface for the
edit distance application.

Between cycles of the system clock, the viewer updates
the values displayed. The values are obtained by using
methods shown in Table 1. References to the circuit wires
that contain the values of interest are obtained with the
findNamed method. The actual values are then obtained
through theget method.



Each of the processor views in the edit distance appli-
cation is a separate, parameterizable GUI panel. This GUI
subpanel was developed along with the hardware design for
an individual processor. This custom view of a single pro-
cessor was used to help debug the hardware design. When
the processor design was verified, both the processor and
GUI subpanel were duplicated in parameterizable arrays in
the hardware design and complete custom viewer respec-
tively. Thus the development of the custom viewer not only
built up the final application interface, it also aided in the
hardware design and debug from the beginning of applica-
tion development.

6.3 Edit Distance Application Controller

The controller for the edit distance application is built by
extending the features of the default RCAFBroker class.
Additional, custom commands are also added to the RCAF
command interpreter. The code for the customBroker
class is shown in Figure 13. A custom edit distance viewer
is created in theEDBroker constructor on line 6. Line 13
creates and registers an instance of theEDCLICommand
class. This class implements a command for the RCAF
command interpreter (theCLInterpreter class). This
command is tied to the text input field in the custom viewer
in Figure 12. Entering a new source string in the text field
causes the custom command to be generated and sent to the
command interpreter, and hence theBroker . This results
in an updated data schedule for the source string input val-
ues that are streamed into the system. This example of cus-
tom interactive circuit input and control shows how the de-
ployed application can be built in such a way that is most
intuitive to the final user, not just the hardware designer.

public class EDBroker
extends Broker {
public EDBroker(HWSystem system,

CLInterpreter interp) {
5super (system,interp);

new EDFrame(system,interp);
}
protected void registerCLICommands(

HWSystem system,
10CLInterpreter interp) {

super .registerCLICommands(system,
interp);

EDCLICommand edc
= new EDCLICommand(interp);

15}
} // end class EDBroker

Figure 13. The EDBroker class extends the
default RCAF controller for the edit distance
application.

6.4 Completing the Edit Distance Application

The edit distance application is executed by a JHDL test-
bench class. This class is the final deployment and execu-
tion point of the application; in this class, the system com-
ponents (the circuit model, the viewers, and the controller)
are built and finally integrated into the complete CCM ap-
plication. The code for this class is shown in Figure 14. It
contains amain method that receives user data on lines 21
and 23. That information is then used to create the test-
bench, and hence the circuit design itself, on line 26. This
is the point at which the RCAF dynamic circuit genera-
tion features are activated to create the optimal circuit con-
figuration for the user. Finally, the application creates an
EDBroker on line 32 to start up the interactive compo-
nents (i.e. the custom viewer and the controller elements).

public class tbEditDistance
extends Logic implements TestBench {
public tbEditDistance(Node parent,

int width,
5String target) {

super (parent);
Wire charIn

= wire(4,"charIn");
Wire distance

10= wire(width,"distance");
new EditDistance( this ,

charIn,
distance,
target);

15Stimulator stim
= new Stimulator( this );

stim.addWire(charIn);
}
public static void main(

20String[] args) {
int width

= Integer.parseInt(args[0]);
String target = args[1];
HWSystem system

25= new HWSystem();
new tbEditDistance(

system,
width,
target);

30CLInterpreter interp
= new CLInterpreter();

new EDBroker(system,interp);
}

} // end class tbEditDistance

Figure 14. The tbEditDistance class builds
and integrates the application components.

This example application demonstrates how simple it is
to extend the existing RCAF to quickly build up a CCM
application. The source code for this example application
is only 1321 lines long, including the circuit design (696



lines), controller extensions (116 lines), and the custom
viewer (507 lines). After compilation and inclusion with the
RCAF, the total size of the application is from two to three
megabytes compressed, depending on features included. Of
that, the application layered on top of the RCAF is a mere
twenty-two kilobytes. Given the features that could be in-
cluded with this application—dynamic circuit model gener-
ation, netlisting, platform control, etc.—the result is a small
(relative to most other full-featured CAD tools) simple, de-
ployable application. The end user needs only to execute
the application in an appropriate runtime environment (i.e.
CCM-specific drivers must be present, a Java runtime en-
vironment must be available, and FPGA-specific placement
and routing tools may be required for design reconfigura-
tion).

7 Conclusion

Existing tools for FPGA design are inadequate to sup-
port the design, debug and deployment of configurable com-
puting machine applications. This paper presents a method
of developing applications for configurable computing ma-
chines based on an application framework. This frame-
work, a reconfigurable computing application framework,
uses sound architectural principles for interactive applica-
tions to create a foundation for CCM applications. Using
this framework can simplify the process of developing and
verifying new CCM applications. This includes the abil-
ity to verify and execute the application in the actual CCM
hardware.

The framework also simplifies the task of creating a cus-
tom interface that best meets the needs of the application.
The framework does not constrain the application to a pre-
defined system like an ordinary CAD tool. Rather, the ap-
plication is built on a foundation that offers the resources
required to create a hardware configuration and correspond-
ing model, and that allows the application to use its own
custom interface. The framework can also scale to allow
the application to include or exclude whatever it needs to be
complete.

Because the RCAF itself is deployed with the final ap-
plication, the underlying data model also allows the appli-
cation to dynamically create the hardware configuration.
This allows the application to be optimized for the user.
Whenever the user-supplied data changes, the application
can change the hardware configuration to improve overall
application performance.
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